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1 Introduction 
 
Logistic regressing is one of the most classical and fundamental classification machine learning 
algorithms. In this report, I mainly discuss the sparse logistic regression with L1 norm. L1 norm 
is a penalty that can be applied to the objective function, and it can make the model sparse. 
Another classic application of L1 norm is lasso regression. But L1 norm is not everywhere 
differentiable, thus we cannot directly use its gradient to optimize the objective function. In the 
following part, I propose the sub-gradient method to solve this problem. 
 
Majorization provides an approximate approach to solve 𝜽∗, If the cost function 𝜽∗ =
arg 𝑚𝑖𝑛𝜽 𝐽(𝜽) has no closed form solution. It uses a surrogate Q with closed form update to 
monotonically minimize the cost from an initial  𝜽଴, which means solving an upper bound of 
cost function instead. 
 
In this report, I explore the sparse logistic regression problems solved by majorization methods. 
In section 2, I do a brief review of logistic regression and apply L1 norm to the log-likelihood 
objective function. In section 3, I discussed the majorization method and how to apply it to 
optimize sparse logistic regression problem. In section 4, the majorization method, the modified 
gradient descent (GD) method with L1 norm and GD with L2 norm are compared. In section 4, I 
propose the low-rank potential future directions. 
 
 

2 Sparse Logistic Regression 
 
2.1 Logistic Regression 
 
A traditional hard linear classifier can be described by the following equations: 
 

𝑧 = 𝜃்𝑥 (1) 
 

𝑦ො = ቄ
1         𝑧 > 0
−1      𝑧 < 0

(2) 

 



Logisitic decision classifier can be described by the following equations: 
 

𝑧 = 𝜃்𝑥 (3) 
 

𝑃(𝑦 = 1|𝑥) =  
1

1 + 𝑒ି௭
(4) 

 
The logistic classifier can generate a soft decision shown below: 

 
Logistic regression can also be easily extended to multiple classes. In (4), the probability is 
predicted via the sigmoid function. For multi-class regression, the probabilities can be predicted 
via the softmax function: 
 

𝑃(𝑦 = 𝑘|𝑥) =  
𝑒௭ೖ

∑ 𝑒௭೔௄
௜ୀଵ

(5) 

 
Comparing with linear regression and some other machine learning methods, the key idea of 
fitting logistic regression is not optimizing a loss function, but the maximum likelihood 
principle. The likelihood function can be described as: 
 

𝑃(𝒚|𝑿, 𝜽) =  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙𝑠 𝑔𝑖𝑣𝑒𝑛 𝑖𝑛𝑝𝑢𝑡 𝑿 𝑎𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝜽 (6) 
 
And the key idea of maximum likelihood is to make 𝑃(𝒚|𝑿, 𝜽) higher, which means find the 
optimal 𝜽∗ to maximize 𝑃(𝒚|𝑿, 𝜽). Then the maximum likelihood estimation can be described 
as: 

𝑃(𝒚|𝑿, 𝜽) =  ෑ 𝑃(𝑦௜|𝒙𝒊, 𝜽)
ே

௜ୀଵ
(7) 

Define log likelihood: 
 

𝐽(𝜽) = ln 𝑃(𝒚|𝑿, 𝜽) =  ෍ ln 𝑃(𝑦௜|𝒙𝒊, 𝜽)
ே

௜ୀଵ
(8) 

Find the optimal  𝜽∗: 
 

𝜽∗ = arg 𝑚𝑎𝑥𝜽 𝐽(𝜽) (9) 
 



And this method is also equivalent to minimize the logistic loss, for example, binary cross 
entropy loss in binary classification. 
 
2.1 Sparse Logistic Regression with L1 Norm 
 
The L1 norm is a penalty scaler applied to the objective function. In many cases, there are too 
many data features, but only a small part of them contribute to the classification. The redundant 
features may cause some problems like overfitting. The L1 norm is an effective method to reduce 
the redundant features, thus leading to a sparse model. Now we apply the L1 norm to the 
objective function in (8), and it becomes: 

𝐽௟ଵ(𝜽) = ෍ ln 𝑃(𝑦௜|𝒙𝒊, 𝜽)
ே

௜ୀଵ
− 𝜆‖𝜽‖ (10) 

Where λ is a scaler can be set before training, and the large λ is, more sparse the model should 
be.  
 
Compared to L1 norm, L2 norm is also often applied to objective functions. Because L2 is 
continuously differential, the objective functions with L2 norm can be solved by some optimizers 
like gradient descent directly. L2 norm leads to a model that is small in magnitude but not sparse. 
The following figure shows the difference between L1 and L2 norm, and intuitively shows why 
L1 norm leads to a sparse model. 
 

 

3 Majorization 
 
3.1 Bounded Partition Function 
 
The log-linear partition function 𝑍(𝜽) is defined as: 

𝑃(𝑦|𝜽) =
1

𝑍(𝜽)
ℎ(𝑦)𝑒𝜽೅௙(௬) (11) 

 

𝑍(𝜽) = ෍ ℎ(𝑦)𝑒𝜽೅௙(௬)

𝒚
(12) 



 
Where 𝑦 ∈ Ω, |Ω| = 𝑛, 𝜽 ∈ ℝௗ, 𝑍(𝜽) ∈ ℝௗ, ℎ(𝑦) is a scaler function which denotes the 
mapping ℎ: Ω → ℝାand 𝒇: Ω → ℝௗ. We adopted the analogous quadratic upper-bound on the 
partition function that was proposed by Choromanska and Jebara in 2012, and then get a 
quadratic upper-bound of 𝑍(𝜽) in (12): 
 

𝑍(𝜽) ≤ 𝑧𝑒(
ଵ
ଶ

൫𝜽ି𝜽෩൯
೅

𝜮൫𝜽ି𝜽෩൯ା൫𝜽ି𝜽෩൯
೅

𝝁) (13) 

Where z, 𝝁 and 𝜮 can be computed by the following algorithm: 

 
Algorithm 1 yields the second-order Taylor approximation (the Hessian) of the log-partition 
function. From (13) we can find that the upper bound of 𝑍(𝜽) is an exponential quadratic 
function. Then iteratively at a fixed 𝜽෩, if z, 𝝁 and 𝜮 are computed, we don’t have to do 
arg 𝑚𝑖𝑛𝜽𝑍(𝜽), instead we can update 𝜽෩ as: 
 

𝜽෩ ← 𝜽෩ − 𝜮ିଵ𝝁 (14) 
 
3.2 Bounded Log-likelihood with L1 Norm 
 
Now we apply the majorization method to sparse logistic regression. The distribution over all y 
can be defined as: 

𝑃൫𝑦ห𝑥௝ , 𝜽൯ =
1

𝑍௫ೕ
(𝜽)

𝑒
𝜽೅𝒇ೣೕ

(௬)
(15) 

𝑍(𝜽) = ෍ 𝑒
𝜽೅𝒇ೣೕ

(௬)

௬∈ஐ
(16) 

 
Where 𝑦௝ ∈ Ω =  −1, 1, and 𝒇௫ೕ

(𝑦) = 𝑦𝑥௝ .  

By applying the method in (8) we can get a log-likelihood function, then by applying the L1 
norm, we can get the following sparse objective function: 
 

𝐽(𝜽) = ෍ [−ln 𝑍௫ೕ
(𝜽) +

ே

௝ୀଵ
𝜽்𝒇௫ೕ

(𝑦)] −  𝜆‖𝜽‖ (17) 

 
According to (13), we can get the lower bound of 𝐽(𝜽) in (17): 
 



𝐽(𝜽)  ≥  𝐽௕௢௨௡ௗ௘ௗ(𝜽)

= ෍ [− ln 𝑧௝ −
1

2
൫𝜽 − 𝜽෩൯

்
𝜮௝൫𝜽 − 𝜽෩൯ − ൫𝜽 − 𝜽෩൯

்
𝝁௝ + 𝜽்𝒇௫ೕ

(𝑦)]
ே

௝ୀଵ
−  𝜆‖𝜽‖ (18)

 

 
Where 𝝁 = ∑ 𝝁௝

ே
௝ୀଵ ,  𝜮 = ∑ 𝜮௝

ே
௝ୀଵ  and 𝒇 = ∑ 𝒇௫ೕ

ே
௝ୀଵ . Now, instead of maximizing 𝐽(𝜽) in (17), 

we can directly maximize 𝐽௕௢௨௡ௗ௘ௗ(𝜽) in (18), which is the lower bound of 𝐽(𝜽). 
 
But there is a problem in maximizing 𝐽௕௢௨௡ௗ௘ௗ(𝜽) in (18) which is that L1 norm is not 
continuously differentiable everywhere, thus 𝐽௕௢௨௡ௗ௘ௗ(𝜽) is also not continuously differentiable 
everywhere. To solve this problem, we can use subgradient instead of gradient. Define: 
 

∇෩𝐽௕௢௨௡ௗ௘ௗ(𝜽) = ൜
∇𝑗(𝜽) +  𝜆 , 𝑤ℎ𝑒𝑛 𝜽 > 0 𝑜𝑟 𝜽 = 0ା 

∇𝑗(𝜽) −  𝜆 , 𝑤ℎ𝑒𝑛 𝜽 > 0 𝑜𝑟 𝜽 = 0ି (19) 

 
Where, 

𝑗(𝜽) = −
1

2
൫𝜽 − 𝜽෩൯

்
𝜮൫𝜽 − 𝜽෩൯ − ൫𝜽 − 𝜽෩൯

்
𝝁 + 𝜽் 𝒇(𝑦) (20) 

 
For the terms 𝜽்𝒇௫ೕ

(𝑦) and 𝜆‖𝜽‖, their second ordered partial derivatives, the Hessian are O 

matrices. Then we can get the Hessian matrix 𝜮 of 𝐽௕௢௨௡ௗ௘ௗ(𝜽) , then we can apply Newton 
method to update 𝜽: 

𝜽௞ାଵ ← 𝜽௞ − 𝜂𝜮ିଵ∇෩𝐽௕௢௨௡ௗ௘ௗ௞
(21) 

Where 𝜂 is the learning rate. We can also apply gradient descent methods like: 
𝜽௞ାଵ ← 𝜽௞ − 𝜂∇෩𝐽௕௢௨௡ௗ௘ௗ௞

(22) 
But comparing with (21) method in (22) is nor preferred in this study. The reason is that the 
performance is relatively bad, specifically, it is slow.  
 
The algorithm can be described as: 

 

𝝁௝, 𝜮௝ ←Algorithm1 

get 𝜮, ∇෩𝐽௕௢௨௡ௗ௘ௗ௞
from (18) and (19), then 𝜽௞ାଵ ← 𝜽௞ − 𝜂𝜮ିଵ∇෩𝐽௕௢௨௡ௗ௘ௗ௞

 
𝑘 

𝑘 



 

4 Experiments 
 
4.1 Parameters 
 
The information of hyperparameter and dataset are listed as following: 
 
 

 Dataset 1&2 Dataset 3 Dataset 4 
λ 0.01 0.1 0.01 

leanring rate  0.01 0.001 0.01 
threshold 0.001 0.001 0.001 
samples 1000 4600 1500 
features 200 57 784 

 
For comparison, I also ran the modified gradient descent (GD) method (with sub-gradient for L1 
norm) with L1 norm and GD method with L2 norm, and BFGS with L1 norm. I also ran the 
majorization optimized by GD in (22) on dataset 4, but it was only for comparison. All the 
methods above used the same set of hyperparameters. 
 
4.2 Loss and Predict Performance 
 
The following figures show the training loss (logistic loss, which is the opposite of log-
likelihood) of the majorization method, the modified GD method with L1 norm and GD method 
with L2 norm on dataset1 and dataset2. We can find that the majorization method not only 
converges faster, but also on some datasets even shows better convergence than the modified GD 
method. We can conclude that optimizing the bounds does not significantly affect the 
optimization process causing it to lose precision. 

 
 

The following figures show the training loss on dataset 3. We can find that although majorization 
method converges slower than BFGS, but still faster than GD and performs better. 
 

Data 1 Data 2 



 
The following figures show the training loss on dataset 4.  We can find that majorization with 
GD update method (orange line) converges very slow. Presumably the reason is that at each 
iteration the algorithm does both bounds calculation and gradient descent. This is the reason why 
I do not prefer method in (22). 

 
The following table shows the performance of different methods. We can find that although 
majorization optimizes the bounded objective function, which is an approximated approach, the 
accuracy is still almost as good as non-approximated methods. Besides, the majorization method 
provides better convergence. Thus, we can conclude that the majorization method has achieved 
effective performance to optimize sparse logistic regression problem. 
 

Dataset 1 Dataset 2 

Method Accuracy Method Accuracy 
Majorization 87.00% Majorization 85.70% 
GD, L1 norm 86.80% GD, L1 norm 87.80% 
GD, L2 norm 88.33% GD, L2 norm 88.40% 

Dataset 3 Dataset 4 
Method Accuracy Method Accuracy 

Majorization 80.70% Majorization (Newton) 82.00% 
GD, L1 norm 77.92% Majorization (GD) 77.60% 
GD, L2 norm 77.96% GD, L1 norm 81.20% 

BFGS 79.28% GD, L2 norm 82.00% 
BFGS 76.80% 



 
4.3 Sparsity Result 
 
The following figures show the sparsity result on dataset 1. The stem plots show the trained 𝜽 of 
the proposed sparse logistic regression optimized by majorization method, sparse logistic 
regression optimized by GD method and ordinary logistic regression with L2 norm optimized by 
GD respectively. We can find that the 𝜽 of the sparse logistic regression model with L1 norm is 
sparser than the 𝜽 of the logistic regression with L2 norm. 
 

 
The following table shows the number of 0 elements of 𝜽s mentioned above on dataset 1 (the 
larger the sparser): 
 

Number of 0 of 200 elements in 𝜽 

Sparse Logistic Regression  
(L1 norm, Majorization) 

Sparse Logistic Regression 
(L1 norm, GD) 

Logistic Regression  
(L2 norm, GD) 

46 61 2 

 
 
The following figures show the sparsity result on dataset 3.  
 

 
The following table shows the number of 0 elements of 𝜽s mentioned above on dataset 3 (the 
larger the sparser): 
 

Number of 0 of 57 elements in 𝜽 

Sparse Logistic Regression  
(L1 norm, Majorization) 

Sparse Logistic Regression 
(L1 norm, GD) 

Logistic Regression  
(L2 norm, GD) 

23 18 1 



 
The following figures show the sparsity result on dataset 4, but the dataset has too many features 
may lead the stem plot hard to read but can provide an intuitive view of the sparsity.  

 
The following table shows the number of 0 elements of 𝜽s mentioned above on dataset 4 (the 
more 0 elements, the sparser the model is): 
 

Number of 0 of 784 elements in 𝜽 

Sparse Logistic Regression  
(L1 norm, Majorization) 

Sparse Logistic Regression 
(L1 norm, GD) 

Logistic Regression  
(L2 norm, GD) 

428 537 186 

 
From the above data, we can find that the model applied L1 norm can be much sparser than the 
model applied L2 norm. 

5 Possible Future Improvements  
 
5.1 Low Rank Bounds for large size 𝜮 
 
If the number of features of the dataset is very large, it may take both very large memory to store 
the Hessian and take a very long time to compute the inverse Hessian (𝑂(𝑑ଷ)). To solve this 
problem, the method of L-BFGS and Woodbury Formula can be adopted. The method projects 
each rank 1 update of 𝜮 to a 𝑽 in the form of 𝜮 = 𝑽்𝑺𝑽 + 𝑫, and the time complexity can be 
reduce to 𝑂(𝑡𝑛𝑑 + 𝑘ଷ), where 𝑺 ∈ ℝ௞×௞, 𝑽 ∈ ℝ௞×ௗ, and 𝑘 is much smaller than 𝑑. 
 
5.2 Explore more methods to optimize the bound 
 
Although the GD method does not work well for optimizing the bound, some other methods can 
be further explored. My assumption is that since the majorization method contains the procedure 
to compute the bound in each iteration, it should be better to apply methods with a quadratic 
convergence rate to optimize the bound, otherwise it may be too slow to converge, like GD.   
  



References 
[1] T.JebaraandA. Choromanska,“Majorizationforcrfsandlatentlikelihoods”,AdvancesinNeural 

Information Processing Systems, vol. 1, pp. 565b–574, 01 2012.  

[2] P. Gong and J. Ye, “A modified orthant-wise limited memory quasi-newton method with 

convergence analysis”, ICML, 2015.  

[3] Sundeep Rangan, “Introduction to Machine Learning”. 2020 

[4] Su-In Lee, Honglak Lee, Pieter Abbeel and Andrew Y. Ng, “Efficient L1 Regularized 

Logistic Regression”, Stanford, CA 94305 

 


