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1 Introduction

Logistic regressing is one of the most classical and fundamental classification machine learning
algorithms. In this report, I mainly discuss the sparse logistic regression with L1 norm. L1 norm
is a penalty that can be applied to the objective function, and it can make the model sparse.
Another classic application of L1 norm is lasso regression. But L1 norm is not everywhere
differentiable, thus we cannot directly use its gradient to optimize the objective function. In the
following part, I propose the sub-gradient method to solve this problem.

Majorization provides an approximate approach to solve 8*, If the cost function 8" =

arg ming J(0) has no closed form solution. It uses a surrogate Q with closed form update to
monotonically minimize the cost from an initial 8,, which means solving an upper bound of
cost function instead.

In this report, I explore the sparse logistic regression problems solved by majorization methods.
In section 2, I do a brief review of logistic regression and apply L1 norm to the log-likelihood
objective function. In section 3, I discussed the majorization method and how to apply it to
optimize sparse logistic regression problem. In section 4, the majorization method, the modified
gradient descent (GD) method with L1 norm and GD with L2 norm are compared. In section 4, |
propose the low-rank potential future directions.

2 Sparse Logistic Regression

2.1 Logistic Regression

A traditional hard linear classifier can be described by the following equations:
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Logisitic decision classifier can be described by the following equations:
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The logistic classifier can generate a soft decision shown below:
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Logistic regression can also be easily extended to multiple classes. In (4), the probability is
predicted via the sigmoid function. For multi-class regression, the probabilities can be predicted
via the softmax function:
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Comparing with linear regression and some other machine learning methods, the key idea of
fitting logistic regression is not optimizing a loss function, but the maximum likelihood
principle. The likelihood function can be described as:

P(y|X,0) = Probability of class labels given input X and weights 6 (6)

And the key idea of maximum likelihood is to make P(y|X, @) higher, which means find the
optimal 8* to maximize P(y|X, 8). Then the maximum likelihood estimation can be described
as:
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Find the optimal 6*:

0" = argmaxg J(0) (9)



And this method is also equivalent to minimize the logistic loss, for example, binary cross
entropy loss in binary classification.

2.1 Sparse Logistic Regression with .1 Norm

The L1 norm is a penalty scaler applied to the objective function. In many cases, there are too
many data features, but only a small part of them contribute to the classification. The redundant
features may cause some problems like overfitting. The L1 norm is an effective method to reduce
the redundant features, thus leading to a sparse model. Now we apply the L1 norm to the
objective function in (8), and it becomes:

N
Ju(0) = Z,zllnp(mx,-, 6) - Alloll (10)

Where A is a scaler can be set before training, and the large A is, more sparse the model should
be.

Compared to L1 norm, L2 norm is also often applied to objective functions. Because L2 is
continuously differential, the objective functions with L2 norm can be solved by some optimizers
like gradient descent directly. L2 norm leads to a model that is small in magnitude but not sparse.
The following figure shows the difference between L1 and L2 norm, and intuitively shows why
L1 norm leads to a sparse model.
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3 Majorization

3.1 Bounded Partition Function
The log-linear partition function Z(8) is defined as:
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Where y € Q, |Q] =n, 8 € R%, Z(0) € R%, h(y) is a scaler function which denotes the
mapping h: Q > Rtand f: Q - R%. We adopted the analogous quadratic upper-bound on the
partition function that was proposed by Choromanska and Jebara in 2012, and then get a
quadratic upper-bound of Z(0) in (12):

7(8) < 2¢@(0-0) 5(6-0)+(0-8)'w (13)
Where z, p and X can be computed by the following algorithm:

Algorithm 1 ComputeBound
Input Parameters 6, f(y), h(y) Vy € 2
itz =07, u=0%=zI
Foreachy € Q { i

a = h(y)exp(87f(y))
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Algorithm 1 yields the second-order Taylor approximation (the Hessian) of the log-partition
function. From (13) we can find that the upper bound of Z(0) is an exponential quadratic
function. Then iteratively at a fixed 8, if z, p and X are computed, we don’t have to do

arg mingZ (@), instead we can update 8 as:

00— 'u (14)
3.2 Bounded Log-likelihood with L1 Norm

Now we apply the majorization method to sparse logistic regression. The distribution over all y
can be defined as:
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Where y; € Q= —1,1, and ij(y) = yX;.

By applying the method in (8) we can get a log-likelihood function, then by applying the L1
norm, we can get the following sparse objective function:

N
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According to (13), we can get the lower bound of J(8) in (17):
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Wherep =Y p;, 2=3Y Zjand f = Z?Llij. Now, instead of maximizing J(0) in (17),
we can directly maximize J,yynaeq (@) in (18), which is the lower bound of ().

But there is a problem in maximizing Jp,undeq(8) in (18) which is that L1 norm is not
continuously differentiable everywhere, thus Jpoundeq (8) is also not continuously differentiable
everywhere. To solve this problem, we can use subgradient instead of gradient. Define:

Vj(@) + A,when@ > 00r@ =0"

Vj(@) — A,when@® >00r0=0" (19)
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For the terms 7 f % (y) and A[|0]|, their second ordered partial derivatives, the Hessian are O

matrices. Then we can get the Hessian matrix X of Jpoundeq (8) , then we can apply Newton
method to update 0:

Orr1 < Ok = NE " Vpoundedy (21
Where 7 is the learning rate. We can also apply gradient descent methods like:
O +1 < 0 — MV poundeay (22)

But comparing with (21) method in (22) is nor preferred in this study. The reason is that the
performance is relatively bad, specifically, it is slow.

The algorithm can be described as:
Algorithm 2
Inpu“ Tiy Yj, f.I,J (y)a A
Output: 6 = 6
Init: 6
while not converged do
forj=1,...,tdo
\ i X «<Algorithm1
end
Compute p and X fork=1, ...,
| (£ 2 Vnounaeai from (18) and (19), then By < Oy = 12 Vpoundea;
en
6« g*!

end




4 Experiments

4.1 Parameters

The information of hyperparameter and dataset are listed as following:

Dataset 1&2 Dataset 3 Dataset 4
A 0.01 0.1 0.01
leanring rate 0.01 0.001 0.01
threshold 0.001 0.001 0.001
samples 1000 4600 1500
features 200 57 784

For comparison, I also ran the modified gradient descent (GD) method (with sub-gradient for L1
norm) with L1 norm and GD method with L2 norm, and BFGS with L1 norm. I also ran the
majorization optimized by GD in (22) on dataset 4, but it was only for comparison. All the
methods above used the same set of hyperparameters.

4.2 Loss and Predict Performance

The following figures show the training loss (logistic loss, which is the opposite of log-
likelihood) of the majorization method, the modified GD method with L1 norm and GD method
with L2 norm on datasetl and dataset2. We can find that the majorization method not only
converges faster, but also on some datasets even shows better convergence than the modified GD
method. We can conclude that optimizing the bounds does not significantly affect the
optimization process causing it to lose precision.
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The following figures show the training loss on dataset 3. We can find that although majorization
method converges slower than BFGS, but still faster than GD and performs better.
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The following figures show the training loss on dataset 4. We can find that majorization with
GD update method (orange line) converges very slow. Presumably the reason is that at each
iteration the algorithm does both bounds calculation and gradient descent. This is the reason why
I do not prefer method in (22).
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The following table shows the performance of different methods. We can find that although
majorization optimizes the bounded objective function, which is an approximated approach, the
accuracy is still almost as good as non-approximated methods. Besides, the majorization method
provides better convergence. Thus, we can conclude that the majorization method has achieved
effective performance to optimize sparse logistic regression problem.

Dataset 1 Dataset 2
Method Accuracy Method Accuracy
Majorization 87.00% Majorization 85.70%
GD, L1 norm 86.80% GD, L1 norm 87.80%
GD, L2 norm 88.33% GD, L2 norm 88.40%
Dataset 3 Dataset 4
Method Accuracy Method Accuracy
Majorization 80.70% Majorization (Newton) 82.00%
GD, L1 norm 77.92% Majorization (GD) 77.60%
GD, L2 norm 77.96% GD, L1 norm 81.20%
BFGS 79.28% GD, L2 norm 82.00%
BFGS 76.80%




4.3 Sparsity Result

The following figures show the sparsity result on dataset 1. The stem plots show the trained 0 of
the proposed sparse logistic regression optimized by majorization method, sparse logistic
regression optimized by GD method and ordinary logistic regression with L2 norm optimized by
GD respectively. We can find that the 0 of the sparse logistic regression model with L1 norm is
sparser than the 0 of the logistic regression with L2 norm.
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The following table shows the number of 0 elements of @s mentioned above on dataset 1 (the
larger the sparser):

0 25 50 7 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Number of 0 of 200 elements in 8

Logistic Regression
(L2 norm, GD)

Sparse Logistic Regression
(L1 norm, GD)

Sparse Logistic Regression
(L1 norm, Majorization)

46 61 2

The following figures show the sparsity result on dataset 3.
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The following table shows the number of 0 elements of 8s mentioned above on dataset 3 (the
larger the sparser):

Number of 0 of 57 elements in @

Sparse Logistic Regression
(L1 norm, Majorization)

Sparse Logistic Regression
(L1 norm, GD)

Logistic Regression
(L2 norm, GD)

23

18

1




The following figures show the sparsity result on dataset 4, but the dataset has too many features
may lead the stem plot hard to read but can provide an intuitive view of the sparsity.
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The following table shows the number of 0 elements of 8s mentioned above on dataset 4 (the
more 0 elements, the sparser the model is):

Number of 0 of 784 elements in 6

Sparse Logistic Regression Sparse Logistic Regression Logistic Regression
(L1 norm, Majorization) (L1 norm, GD) (L2 norm, GD)
428 537 186

From the above data, we can find that the model applied L1 norm can be much sparser than the
model applied L2 norm.

5 Possible Future Improvements

5.1 Low Rank Bounds for large size ¥

If the number of features of the dataset is very large, it may take both very large memory to store
the Hessian and take a very long time to compute the inverse Hessian (0 (d?)). To solve this
problem, the method of L-BFGS and Woodbury Formula can be adopted. The method projects
each rank 1 update of X to a V in the form of £ = VTSV + D, and the time complexity can be
reduce to O(tnd + k3), where § € R¥*k, ¥V € R¥*4, and k is much smaller than d.

5.2 Explore more methods to optimize the bound

Although the GD method does not work well for optimizing the bound, some other methods can
be further explored. My assumption is that since the majorization method contains the procedure
to compute the bound in each iteration, it should be better to apply methods with a quadratic
convergence rate to optimize the bound, otherwise it may be too slow to converge, like GD.
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